Crandall’s computation of the incomplete Gamma function and the Hurwitz zeta function, with applications to Dirichlet L-series
نویسندگان
چکیده
منابع مشابه
Crandall's computation of the incomplete Gamma function and the Hurwitz zeta function, with applications to Dirichlet L-series
This paper extends tools developed by Richard Crandall in [16] to provide robust, high-precision methods for computation of the incomplete Gamma function and the Lerch transcendent. We then apply these to the corresponding computation of the Hurwitz zeta function and so of Dirichlet L-series and character polylogarithms.
متن کاملHypergeometric Series Associated with the Hurwitz-lerch Zeta Function
The present work is a sequel to the papers [3] and [4], and it aims at introducing and investigating a new generalized double zeta function involving the Riemann, Hurwitz, Hurwitz-Lerch and Barnes double zeta functions as particular cases. We study its properties, integral representations, differential relations, series expansion and discuss the link with known results.
متن کاملq-Analogues of the Riemann zeta, the Dirichlet L-functions, and a crystal zeta function
A q-analogue ζq(s) of the Riemann zeta function ζ(s) was studied in [Kaneko et al. 03] via a certain q-series of two variables. We introduce in a similar way a q-analogue of the Dirichlet L-functions and make a detailed study of them, including some issues concerning the classical limit of ζq(s) left open in [Kaneko et al. 03]. We also examine a “crystal” limit (i.e. q ↓ 0) behavior of ζq(s). T...
متن کاملThe Critical Values of Generalizations of the Hurwitz Zeta Function
We investigate a few types of generalizations of the Hurwitz zeta function, written Z(s, a) in this abstract, where s is a complex variable and a is a parameter in the domain that depends on the type. In the easiest case we take a ∈ R, and one of our main results is that Z(−m, a) is a constant times Em(a) for 0 ≤ m ∈ Z, where Em is the generalized Euler polynomial of degree n. In another case, ...
متن کاملAsymptotic and exact series representations for the incomplete Gamma function
Abstract. Using a variational approach, two new series representations for the incomplete Gamma function are derived: the first is an asymptotic series, which contains and improves over the standard asymptotic expansion; the second is a uniformly convergent series, completely analytical, which can be used to obtain arbitrarily accurate estimates of Γ(a, x) for any value of a or x. Applications ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2015
ISSN: 0096-3003
DOI: 10.1016/j.amc.2015.06.048